
*Issue 9* Oct. 2013



About SFA

Objectives

Local centers

Welcome you all to join as members of SFA! Please find the membership form inside; kindly fill in and contact Secretary of SFA through email.

### Experts and experiences:

- Prof. V S Raja,
   IIT, Bombay
- Dr. Amarnath Kosgi
   CEMILAC, Bangalore



SFANewsletter







Dear readers,

Warm greetings to all of you. I am happy to inform you that three SFA centres were inaugurated, one at each - Coimbatore, Jamshedpur and Warangal, and a large number of members joined these centres. I wholeheartedly welcome all the newly joined student members as well as the academicians and members from industrial background for their keen interest. Now it is the right time that regular meetings and events are arranged at our centres once in three or four months to interact and discuss issues of relevance, in addition to conducting theme meetings, workshops and seminars.

While I contemplated over the important issue of failure analysis, a train of thoughts crossed my mind. I thought I must share my thoughts with the esteemed readers of this newsletter, as they too share a wealth of information with us. Failure analysis is an important discipline which involves the process of collecting and analyzing data to determine the cause of a failure of a component, function or process. The role of a failure analyst is equally important in unearthing the true cause of the failure. Therefore, a failure analyst must be a serious scientist with a gift of keen observation. In fact a parallel can be drawn between the failure analyst and a coroner performing an autopsy on a person who suffered an unnatural death; the only difference being that the former works on parts or assemblies that have had an unnatural or premature failure. Failure analysis can be done in a multitude ways. But, in this connection, Jim Glancey has suggested a method of Failure Modes and Effects Analysis (FMEA). In this analysis procedure, equipment/components and their associated single point failure modes, consequences and safeguards are tabulated. Identification/assessment of risk is derived from looking at each component (or machine). An FMEA can be implemented using a hardware or functional approach, and often due to system complexity, be performed as a combination of the two methods. Hardware = loss of a component and Functional = loss of a function or feature. All in all, I personally feel that failure analysis involves three cardinal principles which can be described as 3P and they are, 1) Principles: failure analysis must be done clearly in accordance with the scientific principles, 2) Perseverance: one must work doggedly to gather the evidences to string the loose ends in order to arrive at a scientific and logical conclusion, and 3) Practicality. In the end, I must say that, those who work with these 3P, would certainly be successful, even while analyzing a failure (analysis)!

I found the current newsletter very interesting to read and I specially thank the editors for it. I request all readers to send their feedback to the editors as well as useful articles describing their experiences for publication in the newsletter. It is generally said that: "Minds are like parachutes – they function only when open."

Best wishes & Season's Greetings to all the readers!

T.Jayakumar PRESIDENT, SFA



Page 2 of 18

### From the Desk of Editors



Warm greetings to all! We are happy to present you the 9th issue of the Newsletter of Society for Failure Analysis (SFA). We express sincere thanks our to Dr.T.Jayakumar, President, SFA, who has been motivating us to improve the quality of newsletter with respect to its content and readability as well as organize activities of relevance to industries and so on.

In order to popularize and invigorate the society, efforts were made consistently over the last three years, prominent among them were, accomplishment of several activities by our local centres at places, 2) various organizing workshops for inspiring the young engineering students in association with various other professional bodies, and 3) bringing out the Newsletter. As a result of these efforts, three centres of SFA were inaugurated succession in at Coimbatore Warangal, and Jamshedpur the last three in months. The glimpses of the inauguration programs at these places are highlighted in this issue.

We have solicited articles from experts in the important area of corrosion. An interesting article entitled, "Do Principles of Corrosion Matter in Corrosion Failure Investigations?" describes how ignorance of corrosion knowledge can lead to catastrophic industrial failures.

We thank the authors for their invaluable contributions which give the readers an important insight into their experiences. We take this opportunity to appeal to the

scientists, engineers technicians of Indian industry to use SFA as a forum to share their experiences and practical ideas on troubleshooting. An impressive way to add relevant information to this newsletter is include a calendar upcoming events. The details of important forthcoming international national and events are included; also the information about recently published books on this subject is added.

We value your comments, which really boost our enthusiasm to perform better. Therefore, as always, views and comments, mailed to pujar@igcar.gov.in param@igcar.gov.in are welcome. We wish you all a joyful life free from failures! You may visit our web site for posting your comments/ suggestions or any queries: www.sfaindia.org

Kalpakkam (M.G.Pujar) 30-09-2013 (P.Parameswaran)

**Editors** 



We encourage you to join the society, Kindly fill up the application form (enclosed at the end of the newsletter) and contact secretary:, post your application with a DD (in favour of SFA, Hyderabad) to Dr. N.Eswara Prasad, Regional Director, RCMA (Materials), CEMILAC, Kanchanbagh, Hyderabad, 500 058



### **Patrons**

Dr. A. C. Raghuram, formerly of NAL, Bangalore

Dr. Amol A. Gokhale, DMRL, Hyderabad Dr. Baldev Raj, PSG Institutions, Coimbatore

Prof. D. Banerjee, IISc., Bangalore

Dr. G. Malakondajah, DRDO, New Delhi

Dr. P. Rama Rao, ARCI, Hyderabad

Dr. S. Srikanth, NML, Jamshedpur

Dr. V.K. Saraswat, DRDO, New Delhi

### **Past Presidents**

Dr. A. Venugopal Reddy, ARCI, Hyderabad Dr. K. Tamilmani, CEMILAC & DRDO, Bangalore

### **President**

Dr. T. Jayakumar,

FNAE, FIIM, FISNT, FUSI, FASI, FIIW Distinguished Scientist and Director

IGCAR, Kalpakkam – 603 102, India

**Vice Presidents** 

Dr. S. K. Bhaumik, NAL, Bangalore Dr. M. Srinivas, DMRL, Hyderabad Shri P. Jayapal, CEMILAC, Bangalore Prof. R.C. Prasad, IIT-B, Mumbai Prof. T. Srinivasa Rao, NIT, Warangal

**General Secretary** 

Dr. N. Eswara Prasad, RCMA (Mat.), Hyderabad

### Joint Secretaries

Shri Bahukhandi, Former IOCL, Mumbai Dr. Kulvir Singh, BHEL R&D, Hyderabad Dr. P. Parameswaran, IGCAR, Kalpakkam

### Treasurer

Shri B. Jana, RCMA (Mat.), Hyderabad Members:

Shri AK Jha, VSSC, Thiruvananthapuram Shri BB Jha, IMMT (RRL), Bhuvaneshwar

Dr. DR Yadav, DRDL, Hyderabad

Dr. Eswaran, BHEL, Tiruchirapalli

Dr. KP Balan, DMRL, Hyderabad

Prof. K Srinivasa Rao, AU, Visakhapatnam

Shri Komal Kapoor, NFC, Hyderabad

Dr. M Vijayalakshmi, IGCAR, Kalpakkam

Prof. MK Mohan, NIT, Warangal

Shri MS Velpari, HAL (F/F), Bangalore

Shri Prabhat Gupta, RCMA (Luknow),

Lucknow

Shri RK Satpathy, RCMA (Koraput),

Koraput

Dr. Sandip Bhattacharya, Tata Steel,

Jamshedpur

Shri SD Lagavankar, RCMA (Nasik), Nasik

Dr. S Seetharamu, CPRI, Bangalore

Dr. S Tarafdar, NML, Jamshedpur

Dr. S Janaki Ram, IIT-M, Chennai

Dr. UTS Pillai, NIIST, Thiruvananthapuram

Dr. Vivekanand Kain, BARC, Mumbai

Prof. VS Raja, IIT-B, Mumbai

Shri YS Gowaikar, Metatech, Pune

### **Editors of Newsletter:**

Dr.M.G.Pujar, IGCAR Dr.P.Parameswaran, IGCAR



### About the society

### Aims and Objectives of **Society for Failure Analysis**

The aims and objectives of the Society shall be:

To serve as National Society to promote, encourage develop the growth of "Art and Science of Failure Analysis" and interest stimulate compilation of a database, for effective identification of root causes of failures and their prevention thereof.

To serve as a common forum for institutions, individuals, organizations and Industries interested in the above.

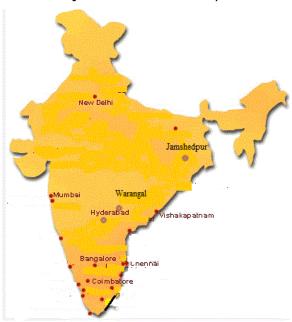
disseminate information concerning developments both in India and abroad in the related fields.

To organize lectures, discussions, conferences, seminars, colloquia, courses related to failure analysis and to provide a valuable feed back on failure analysis covering design, maintenance materials, and manufacturing deficiencies limitations.

To train personnel in investigation of engineering failures components and their mitigation.

To identify and recommend areas for research and development work in the Country relating to failure analysis.


To establish liaison with Government. individuals, institutions and commercial bodies failure analysis, on methodologies and to advise on request.


To cooperate with other professional bodies having similar objectives.

To affiliate itself to appropriate international organization(s), for promotion of common objectives and to represent them in India.

To organize regional chapters in different parts of the country as and when the need arises.

To do all such other acts as the Society may think necessary, incidental or conducive to the attainment of the aims and objectives of the Society.





Page 4 of 18



# **Inauguration of Society for Failure Analysis (SFA), Jamshedpur Centre**

The Jamshedpur Centre of Society for Failure Analysis was formally inaugurated on 30<sup>th</sup> August 2013 at Jamshedpur. Mr A M Misra, Vice-President, Shared Services, Tata Steel Ltd, graced the inaugural programme as the chief guest and inaugurated the Jamshedpur Centre of Society for Failure Analysis as well. Mr Misra, in his speech, expressed the expectations from the failure investigation fraternity and emphasized on the requirement of a right kind of diagnostic and remedial journey and simulation.

In the inaugural programme, Mr. Chairman B.K. Das. of the organizing committee and Dr. Sandip Bhattacharya, Co-Chairman organizing committee the discussed about the objectives of this initiative. Mr. S.K. Roy, Chief of Blast furnaces, Tata Steel and Dr. T. Venugopalan, Chief Technology Officer, New Projects, Tata Steel were also present amongst the other dignitaries.

On this occasion, SFA Jamshedpur Centre organized a one day workshop on failure investigation, named as 'Failure Analysis Clinic', at TMDC Auditorium in association with The Indian Institute of Metals, Jamshedpur Chapter, Indian Society for Non-destructive Testing and Society for Failure Analysis.

The idea of organizing this failure analysis clinic was conceived with a view to bridge the gap that presently exists between the experienced & the beginners' in the field. The clinic provided a platform understanding and discussing failure phenomena. Around 100 plant engineers, R&D material scientists, graduate engineers voung authorities dealing with regulations participated in the programme. Six eminent personalities from Industry, Research Institutes and Academia presented their experiences in the sessions. List included Prof. K.K.Ray, IIT Kharagpur, Parameswaran Padmanabhan, R&D-IGCAR, Dr. S. Tarafdar, NML, Dr. Sandip Bhattacharya, Tata Steel and Mr. J.C. Pandey, Consultant NDT Specialist. The workshop concluded with a panel discussion.







Page 5 of 18



# **Inauguration of Society for Failure Analysis (SFA), Coimbatore Centre**

The Coimbatore Centre of Society for Failure Analysis (SFA) was formally inaugurated on 6<sup>th</sup> September, 2013 at Mahalingam College Dr. Engineering and Technology (MCET), Pollachi. During the inaugural programme, Dr. Ranga Palanisamy, **MCET** Principal, welcomed gathering and spoke on the importance of the subject not only to mechanical engineers but to all those of other disciplines like aerospace, electrical and electronic engineering streams as well. In his presidential address, Dr. Vijayarangan, Director, **MCET** recollected briefly his National association with Aeronautical Laboratory (NAL) and described the importance of usage of recent methodologies in understanding

fatigue failures in the industry. Gracing the inaugural occasion and lighting the Kuthuvilakku (ceremonial lamp) and declaring SFA open the centre Coimbatore, Sri. K.V.Kasiviswanathan, former Associate Director and currently Raja Ramanna Fellow at IGCAR, Kalpakkam emphasized the need for awareness among the budding engineers on the subject as the current trends in design are trying to reduce the margins of factors of safety. Convener, Dr.P.Parameswaran, **IGCAR** briefed the audience on the various advantages of becoming a member of SFA and also briefed on the workshop.







Page 6 of 18



### **Inauguration of SFA, Warangal Centre**

The SFA Chapter was inaugurated at National Institute of Technology (NIT), Warangal on July 19, 2013. The event took place at the Seminar Hall of Metallurgy and Materials Engineering (MME) of **NIT** Warangal. Prof. M.K. Mohan of the Dept. of MME delivered the welcome address. Dr.N.Eswara Prasad, General Secretary-SFA & RD-RCMA (Mat), CEMILAC, Hyderabad briefed the audience about the Society for Failure Analysis and its recent activities. The Chief Guest Dr. T. Jayakumar, President- SFA and Distinguished Scientist & Director (MMG), IGCAR, Kalpakkam inaugurated the Warangal Chapter. The Chief Guest and Guest of Honor Professor T Srinivasa Rao, Director, NIT, Warangal Chairman-SFA, Warangal Chapter emphasized the need to propagate and nurture the subject of failure analysis the students among pursuing engineering degree who will be the leaders of tomorrow in materials development and production as well as component design, fabrication and service. The renowned failure analyst Dr.A.Venugopal Founder President of SFA. Hvderabad delivered the keynote technical lecture on "Fatigue Origins & Fatigue Failures" during the occasion. The event attended by as many as 100 participants which include the senior scientists of Hyderabad based DRDO laboratories, young faculty members, research scholars and students of NIT Warangal. Other SFA executives such as Dr.M.Srinivas, Vice President. SFA, DMRL, Hyderabad and Shri.B.Jana, Treasurer, SFA, RCMA (Mat), Hyderabad were also present during the event and have actively contributed the discussion.





Corrosion in the field can spring

Page 7 of 18

# **Do Principles of Corrosion Matter in Corrosion Failure Investigations?**

V. S. RAJA

Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai -400076 Email: vsraja@iitb.ac.in

surprises. The science behind most ofthe corrosion failures is investigated, analyzed and documented. Yet engineers "commit blunders" and invite the wrath of corrosion fraternity causing serious problems for economy, environment and safety among other things. Nevertheless, there could be a few "unanticipated" failures. One might have seen red rust appearing even on galvanized steel although it could have been adequately covered with zinc coating. Wittingly or unwittingly, anodic member of dissimilar metal joints is often painted only to find later that the very anode coated with perforate much more rapidly than it could have, if left unpainted. In the field, corrosion failures occur either due to (a) lack of knowledge (b) lack of willingness to analyze the problem as production is paramount to engineers (c) leniency towards "ad

hocism" and too much empiricism

among other causes. Whatever be the compulsions, corrosion is unforgiving and causes failures, for corrosion follows the principles of basic science and that manmade metals and alloys are thermodynamically unstable in chemical environments and would like to go back to their original state such as oxides, chlorides and sulfates with the support of free energy they The corrosion failure release reported herein resulted in a chemical company which optimized energy consumption for boilers producing steam for a steam turbine for generating electricity. As would happen, the normally company waited for three different boilers to drip during service one after another, before it could decide that a thorough investigation was warranted and thus the problem was handed over to me. Presentation of the study in detail here would be beyond the scope of this magazine and I shall narrate only the salient features that led to proper conclusions and recommendations.

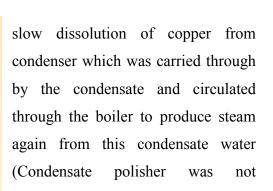
Engineering, medicine, business, architecture and painting are concerned not with the necessary but with the contingent - not with how things are but with how they might be - in short, with design.

-Herbert Simon



Page 8 of 18




which of course were implemented and the boilers are working fine till date even after a decade of implementation. The article hopefully drives home the point that understanding corrosion principles is paramount in investigating the corrosion failures.

The three gas-fired steam boilers in question were operating at 100 bar pressure and dripped one after another during service at high operating pressures. On examination, the boiler tubes made of Cr-Mo steel were found to be leaking (Fig.1). As the failure could be due to (a) overheating and consequent creep (note: of overall heat 50% about transferred in boiler tubes) (b) corrosion (due different to mechanisms) (c) other failures (such as manufacturing fabrication and The defects). microstructural examination such as grain size and decarburization (Fig.2) and inspection of the contours of the outer surface of the tube ruled out the first possibility. That is, the boilers did not fail by There creep. were apparent no manufacturing defects as well. The other possibility, namely corrosion was analyzed. The nature of oxides formed on the leaked area was examined

through electron X-ray photo spectroscopy (XPS) and energy dispersive spectroscopy (EDS). Only the important data that led us to conclusions are presented in Figs.3 and 4. As the boiler water was treated with co-ordinated phosphate treatment, the presence of phosphate (as detected by Fig. 4) was not surprising. The Ca (Fig. 3) could have come from total dissolved solids (TDS) of the boiler feed water. However, the presence of Cu and Mg is the most striking, as they are not expected in the boiler feed water. Appropriate analysis is required at this stage. Quite often investigators get tied up to the location of the failure to find answers. Sometimes they assume only anodic area is responsible for corrosion, forgetting the fact that cathodes do contribute to the corrosion could also other and there be associated areas that are responsible corrosion failures. Copper for deposition had galvanic induced corrosion. However it was necessary to find where it came from. In any thermal power plant, condenser is an important unit as the steam that comes out of a steam turbine needs to condense into water. This condenser was made of cupronickel alloy and the



Page 9 of 18



operational to remove these ions).

Should the condenser suffer severe

corrosion it would not only release

copper ions but also cause leak letting

the cooling water, which could

contain Mg, in the condensate. The

inspecting the condenser and found it

confirmed

on

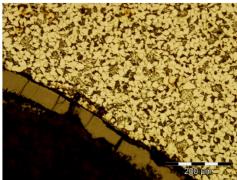
was

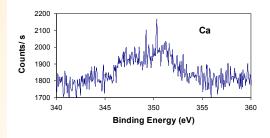
suspicion

to be leaking.

While the cause of boiler leak was identified to be due to Cu deposition, it was not clear why the condenser leaked. What happened to it during the intervening period of planned shutdown, when inspection was carried out on the condenser and found it to be in good condition, and the time the boiler started to leak, which was relatively a small duration? Here comes the glitch. The management went for all volatile treatment of boiler feed water to replace the coordinated phosphate treatment which was employed till then, because of the fact that the former reduced the sludge in water;

so less water blow down and more energy saving due to this change. The decision makers in the production department, who took this decision to save the production cost, were oblivious to corrosion consequences. Little did they realize that all volatile treatment lacked the buffering action offered by cooperative phosphate treatment and hence demanded a more stringent feed water quality control in the absence of which the various units including condenser, suffered from corrosion. So a comprehensive corrosion control regime must be put in place. For that, a thorough review of pros and cons should be made keeping in mind the metallurgy employed in all units and the likelihood of environment the causing unexpected levels of corrosion. Of course in the present case, the company was advised to change the metallurgy of the condenser tubes from cupronickel to duplex stainless steel and ensure stringent feed water chemistry for all volatile treatment, a win-win situation for production and maintenance personnel.





Page 10 of 18

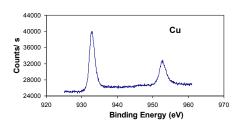

Fig. 1: Photograph showing the nature of corrosion attack. Deep corrosion pit is seen



Fig. 2: High magnification optical micrograph of the cross-section of the failed tube from the waterside region. Not much decarburization and grain growth was observed.







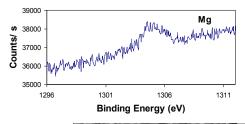



Fig. 3 Typical XPS spectra of obtained on the sputtered surface showed the presence of Ca, Cu, and Mg

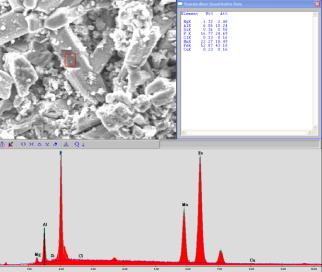





Fig. 4 Crystalline morphology of oxide scale at some location and the presence of P in the crystallites as detected by EDS.

Page 11 of 18



# Predictive Oil Analysis to prevent aeroengine failure

### Amarnath Kosgi,

CEMILAC, Defence R&D Organisation, Bangalore <a href="mailto:amarnath.kosqi@qmail.com">amarnath.kosqi@qmail.com</a>

# Lubrication of aeroengines and Wear Debris particle generation

Military aircraft are sophisticated engineering that systems require meticulously devised maintenance programs reliable to ensure performance for effective operational Aeroengines have several readiness. interacting surfaces in relative motion, predominantly gears and bearings, which are lubricated with synthetic / mineral based oils for long endurance and high amplitude cyclic loads. For an aeroengine, after the break-in running period post manufacture, the stabilized operations lead to steady generation of wear particles at the interacting surfaces caused by load and relative motion. These wear debris particles are carried away by the flowing lubricant in the closed loop oilcircuit. Over a period of time, various mechanical abnormalities such as the onset of fatigue, corrosion, abrasion, misalignment, lubricant starvation and cavitations, etc. may arise influencing the wear mechanisms and formation

patterns of wear debris.

## Wear debris characterization and Root cause analysis for defect identification

The type of wear debris is identified by its shape, size, texture, surface features and colour. particular wear mechanism typically generates a characteristic type of wear debris and for each type there may be slight variation in particles depending on the severity and rate of wear. A holistic analysis of all these features of wear debris provides very meaningful insights on the actual wear mechanism; based on this suitable preventive / corrective measures can be taken well in advance. This capability of in-situ oil analysis to predict the impending catastrophic engine failures makes it a very useful prognostic health monitoring tool aeroengine maintenance. Analytical ferrography is a stateof-the-art predictive maintenance

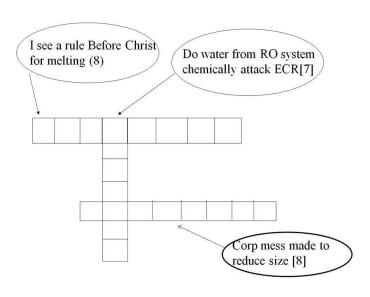


Page 12 of 18



technique based on wear debris analysis and provides a comprehensive non-intrusive evaluation of the health of lubricated components while the aero-engine is in service. The wear debris (ferrous and non-ferrous), present in a sample of oil-in-service are precipitated on a glass micro-slide, observed using advanced microscopy and these micrographs are processed using image analysis software. The image data on shape, size, concentration and colour of wear debris particles is recorded and compared with the library database, which is collected from thousands of operating hours of that particular aeroengine.

Oil analysis for prevention of


# impending failures in aeroengine components

Some important deductions from ferrography are wear mode (viz.: abrasion, impact, fatigue, erosion, corrosion, scuffing, severe sliding, etc), wear rate, severity and location of wear particle generation. The concentration of wear debris indicates typical rate of wear whereas the size distribution of debris particles gives insights on the severity of wear. The composition of particles identifies the type of metal / alloy affected which pinpoints the component(s) amongst the oilwetted surfaces of the system.





### Cross word on failure analysis terminologies



Page 13 of 18



### **Attention readers:**

In this issue onwards we are planning to add a column on the latest articles published in the leading journals relevant to failure analysis area. Kindly click the links holding control and the under lined hyperlink;

### **Recent articles in the Engg failure Analysis Journal:**

see the following link: <a href="http://www.sciencedirect.com/science/journal/13506307/33">http://www.sciencedirect.com/science/journal/13506307/33</a>

| 1 🖪 | FCEditorial Board   Page IFC   Show preview                                                                                                                                                                                  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 🗖 | Generation and validation of loading profiles for highly accelerated durability tests of ground vehicle components Original Research Article Pages 1-16 A.K.M. Shaffullah, Christine Q. Wu                                   |
|     | Show preview   The PDF (2981 K)   Recommended articles   Related reference work articles                                                                                                                                     |
| 3 🖪 | Fatigue life time prediction of PoAF Epsilon TB-30 aircraft – Implementation of automatic crack growth based on 3D finite element method Original Research Article Pages 17-28 Bruno Serrano, Virgínia Infante, Bruno Marado |
|     | Show preview   📆 PDF (1962 K)   Recommended articles   Related reference work articles                                                                                                                                       |
| 4   | Sulfuric acid dew point corrosion in waste heat boiler tube for copper smelting furnace Original Research Article Pages 29-36 R. Ebara, F. Tanaka, M. Kawasaki                                                               |
|     | Show preview   📆 PDF (2315 K)   Recommended articles   Related reference work articles                                                                                                                                       |
| 5 🔳 | Bending fatigue behaviour of bearing ropes working around pulleys of different materials Original Research Article Pages 37-47                                                                                               |
|     | Dekun Zhang, Kai Chen, Xiaofan Jia, Dagang Wang, Songquan Wang, Yong Luo, Shirong Ge                                                                                                                                         |
|     | Show preview   PDF (3106 K)   Recommended articles   Related reference work articles                                                                                                                                         |
| 6 🖪 | Analysis of weld cracking in shotblasting chambers made of Hadfield steel Original Research Article Pages 48-54 Borut Zorc, Aleš Nagode, Borut Kosec, Ladislav Kosec                                                         |
|     | Show preview   Map PDF (1760 K)   Recommended articles   Related reference work articles                                                                                                                                     |
| 7 🖪 | Investigations on core basket bolts from a VVER 440 power plant Original Research Article Pages 55-65                                                                                                                        |
|     | Ulia Ehrnstén, Janne Pakarinen, Wade Karlsen, Heikki Keinänen                                                                                                                                                                |
|     | Show preview   PDF (3900 K)   Recommended articles   Related reference work articles                                                                                                                                         |
|     |                                                                                                                                                                                                                              |

"Every great mistake has a halfway moment, a split second when it can be recalled and perhaps remedied." Pearl S. Buck



Page 14 of 18



### Journal of Failure analysis and Prediction -latest issue:

Click the link holding control:

http://link.springer.com/search?sortOrder=newestFirst&facet-content-type=Article&facetjournal-id=11668

Ryan J. Haase, Larry D. Hanke in Journal of Failure Analysis and Prevention (2013)

» Look Inside

» Get Access



### **Events**

The conference will cover aspects of economics and markets, mineral processing, pyrometallurgy, hydrometallurgy, electrowinning and electrorefining, sustainable development, environment, health and safety,

Journal of Failure Analysis and Prevention (2013)

» Look Inside

» Get Access



### Failure Analysis of Epoxy Resin Encapsulant During a Long-Term Storage

In this article, the failure phenomena of softening and flow of crosslinked epoxy resin encapsulant during a long-term storage were analyzed by means of fault tree analysis, Fourier transform infrared spectros... Guobin Zhang, Yusen Wang, Shinian Zhang... in Journal of Failure Analysis and Prevention (2013)

» Look Inside

» Get Access



### Failure Analysis and Mechanical Performance Evaluation of a Cast Aluminum Hybrid-Iron Golf Club Hosel

This article details the failure analysis of a commercial golf club hybrid-iron that fractured through the hosel during normal use. The golf club hosel was manufactured from a cast aluminum alloy, and the opti... Christopher A. Walton, Benjamin E. Nesbit... in Journal of Failure Analysis and Prevention (2013)

» Look Inside

» Get Access



### Experimental and Numerical Failure Analysis of Vertical Rods Used in Paper Molding Machine

A failure investigation has been conducted on the vertical rods which used in paper molding machines. The vertical rods are important elements for paper molding machines to support press forces. Each of the ve...



## **Society for Failure Analysis**

### **Application Form**

**Society for Failure Analysis** C/O Centre for Military Airworthiness & certification, RCMA (Materials)

Hyderabad500 058

Please √ applicable member Phone: 040-24340750; 24348377;

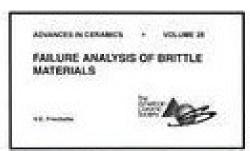
Fax: 040-24341827

E-mail: rdrcma.mat@cemilac.drdo.in

Life Member

Affix a passport size photograph

| her's Name/ Husband':                                                                                                       |                                                     |                  |                                | •               | one:                          |                  |  |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------|--------------------------------|-----------------|-------------------------------|------------------|--|
| Present Occupation /Designation and office address:                                                                         |                                                     |                  |                                |                 |                               |                  |  |
| ademic & Professional                                                                                                       | Qualifications:                                     |                  |                                | •               |                               |                  |  |
| Home address:                                                                                                               |                                                     |                  |                                |                 | Phone:  Mobile:  Fax:  E-mail |                  |  |
| dress for correspondenc                                                                                                     | e: office                                           |                  | Home                           | <u>L-11</u>     | <u>IMII</u>                   |                  |  |
| nary Field of Interest: (p                                                                                                  | please mark 1,2,3                                   | in the in        | order of preference            |                 | industry                      | transport        |  |
|                                                                                                                             | rol Petrochemic                                     | cal              | Consultancy /                  |                 | ials and<br>facturing         | Education        |  |
| gn & Quality contracts  Quality contracts                                                                                   |                                                     | ched             | services                       | manu            | iacioning                     |                  |  |
| me of the Chapter you<br>ease refer to Chapters'<br>oscription details:<br>ment should be made by<br>eques not accepted.    | intend to be attac<br>list)                         |                  |                                | <b>is</b> ", pa |                               | erabad. Outstati |  |
| me of the Chapter you<br>ease refer to Chapters'<br>oscription details:<br>ment should be made by<br>eques not accepted.    | intend to be attact<br>list)<br>y cheque / DD favor |                  |                                | <b>is</b> ", pa | yable at Hyd                  | erabad. Outstati |  |
| me of the Chapter you ease refer to Chapters' escription details: ment should be made by eques not accepted.  Ount Rs. (    | intend to be attact<br>list)<br>y cheque / DD favor |                  | ety for Failure Analys         | is", pa         | yable at Hyd                  | erabad. Outstati |  |
| me of the Chapter you ease refer to Chapters' escription details: ment should be made by eques not accepted.  Ount Rs. Care | intend to be attact<br>list)<br>y cheque / DD favor | ing <b>"Soci</b> | ety for Failure Analys  Branch | is", pa         | yable at Hyd                  | erabad. Outstati |  |
| me of the Chapter you ease refer to Chapters' escription details: ment should be made by eques not accepted.  Ount Rs. Care | intend to be attact<br>list)<br>y cheque / DD favor |                  | ety for Failure Analys  Branch | is", pa         | yable at Hyd                  | erabad. (        |  |


If elected, I agree to accept to pay the prescribed yearly subscription, to abide by the Articles of Association of the Society and to promote its aims and objects. Signature of the Applicant

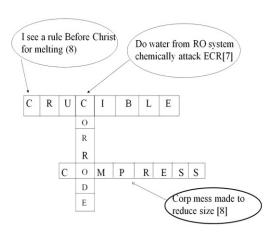
| 13. | Office Use Only     |  |                    |  |         |  |  |  |
|-----|---------------------|--|--------------------|--|---------|--|--|--|
|     | Membership<br>No.   |  | Date of Enrolment  |  | Chapter |  |  |  |
|     | Amount Paid<br>(Rs) |  | Receipt No. / Date |  |         |  |  |  |

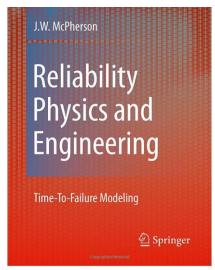
Page 16 of 18

## Books/new journals









Author: V. D. Frechette

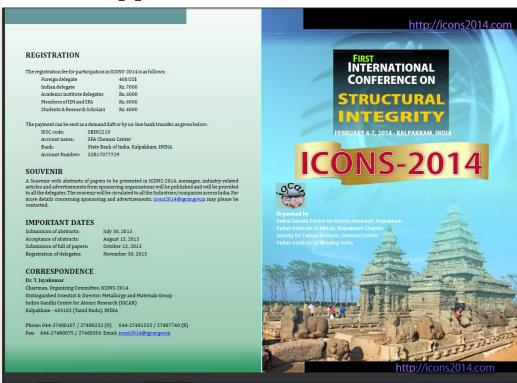
Publisher: American Ceramic Society (1990090

Fractures are discussed theoretically and practically. This book represents a conscious effort on the part of the author to detail the \"life\" of a crack, from its inception, through its growth, to its culmination. The author is careful to define all key terms within the text, making this book an excellent reference for anyone working with brittle materials.

This book is very good for electrical and mechanical engineers who should appreciate the materials science and its relevance to reliability. Since proper materials design can be critically important, reliability factor which is distinguished from quality as time-dependence material or device degradation, it is very relevant to the practicing engineers.






**Answer to Cross word** 



Page 17 of 18



## Events in the pipeline



### Plan of SFA events for the current year (2013-14)

Theme meeting on Stainless steels for Power Sectors (SSPS-2013), at IGCAR, Kalpakkam 20-21, Oct.2013

National Workshop on Failure Analysis (NWFA)

Anna Univ. Chennai 28-29, Oct. 2013

Workshop on materials selection for failure prevention DMRL, Hyderabad Nov.8, 2013

Two day workshop on failure analysis of materials (FAMM)

Bangalore Jan.27-28, 2014

Two day workshop on failure analysis of materials (FAMM)

Hyderabad Jan 29-30, 2014

Special lecture\* on Antique silver by Dr. R J H Wanhill, The Netherlands, at IIT Madras

Feb, 2014

\*The exact dates would be announced later;

"The most successful men in the end are those whose success is the result of steady accretion."

-Alexander Graham Bell



Page 18 of 18





ASME Gas Turbine Chapter of India, supported by ASME International Gas Turbine Institute (IGTI), announces the **ASME 2013 Gas Turbine India Conference** in **Bangalore**, **Karnataka**, **India** on December 5-6, 2013 at the **CSIR-National Aerospace Laboratories** 

HIDA-6 Conference, Nagasaki, Japan, 2-4 December 2013

Conference theme: Life/ Defect Assessment and Failures in High Temperature Plant



Dear Colleague

The Updated **Programme** (including the Registration Form) for the HIDA-6 Conference being held in Nagasaki, Japan, on 2-4 December 2013 can be accessed at: <a href="http://www.etd-consulting.com/our-services/training-conferences/hida-6-nagasaki-japandec-2013/">http://www.etd-consulting.com/our-services/training-conferences/hida-6-nagasaki-japandec-2013/</a>
The

We are on the Web! Please visit www.sfaindia.org

6th International Conference on Tribology in Manufacturing Processes & Joining by Plastic Deformation: Darmstadt, Germany: June 22-24, 2014

7th International Conference on Fracture of Polymers, Composites and Adhesives: 14 - 18 September 2014: Les Diablerets, Switzerland

For Private circulation only

To

From Society for Failure Analysis (SFA) C/O Centre for Military Airworthiness & Certification, RCMA (Materials) Kanchanbagh Hyderabad-500058